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An axiomatic method of constructing physics in Lobachevsky space is proposed. 
Dynamical equations are applied to explain the principal properties of the solar 
system, its planets, their satellites, and rings. 

1. PRESENT SITUATION IN SOLAR C O S M O G O N Y  

It is well known that despite numerous attempts to explain the origin 
of  the solar system (beginning with Descartes' hypothesis in 1644), to this 
day there is no theory making it possible to interpret the main peculiarities 
of  the planets of  the solar family. A number  of once popular  theories 
managed to give good explanations for just  some of  these peculiarities, but 
insurmountable difficulties arose for the rest. 

Let us give here only the most interesting properties of  the solar system 
(Klimishin, 1980): 

1. The orbits of  the planets lie practically in the plane of the solar 
equator and are close to circular. 

2. Most of the secondary planets move in almost circular orbits in the 
plane of  their equator. 

3. The principal planets (Saturn, Jupiter, Uranus, and, according to 
the latest data, Neptune) have ring systems in their equatorial planes. 

4. All the planets move about the sun in the same direction, coinciding 
with that of  the proper  rotation of  the sun. 

5. 99.8% of  the whole solar system mass comes from the sun and only 
0.2% the planets, whereas the planets have 98% of  the angular momentum. 
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The conceptions of the genesis of the solar system based on Newtonian 
mechanics and the Euclidean geometry of space have the following 
difficulties. 

Only three scenarios of incipient planetary formation are possible: 
1. Formation from the same gaseous dust cloud as the sun (Kant). 
2. Capture by the sun of the planetary cloud (Schmidt). 
3. Separation of the planets from the sun in the process of evolution 

(Laplace, Jeans, and others). 
While the first and the third variants meet great difficulties in the 

explanation of the above property 5 of the solar system (contradiction of 
the law of conservation of angular momentum), the second variant does so 
with the explanation of property 1 (captured planets have no necessity to 
move in the plane of the solar equator). 

The properties 2-4 are no easier to explain. General relativity when 
brought into these problems cannot dramatically change the situation, since 
the corrections it could being would be small for the lifetime of the solar 
system (Landau and Lifshitz, 1973). 

That is why to solve the question of the genesis of the solar system 
new approaches are needed. As one of these, let us turn to Lobachevsky 
geometry, which is the most natural generalization of Euclidean geometry. 

As was demonstrated by Friedman (1979), the cosmological equations 
of general relativity (with the cosmological term) allow a stationary 
Lobachevsky geometry if, besides common matter, there exists matter with 
a negative density of energy. Such matter can be the physical vacuum viewed 
in the Dirac sense (Sokolov et al., 1979). 

Let us take up the task of building physics in the stationary Lobachevsky 
space. Since this can be realized only in the presence of a physical vacuum, 
it is necessary to take into consideration the influence of the latter on the 
bodies moving relative to it. 

The question of such influence is open, and so to build up physics in 
Lobachevsky space we shall take the axiomatic approach--we shall add 
some natural physical axioms to the Lobachevsky geometry. 

But first let us turn to some characteristics of Lobachevsky geometry 
important for our purpose. 

2. SOME DATA FROM LOBACHEVSKY GEOMETRY 

In Lobachevsky planimetry there is an infinity of straight lines passing 
through a point beyond a given one without crossing it. The two lines 
bordering a line and coming unlimitingly near it at infinity on the left and 
one the right were named by Lobachevsky the left and the right parallel 
lines, respectively. 
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Consider the coordinate system made by three mutually perpendicular  
straight lines of Lobachevsky space that have a common point O. This 
coordinate system we shall call Cartesian and the three orthogonal projec- 
tions of  any point down these straight lines (axes of  the system) counting 
from point O we shall call its Cartesian coordinates ~:1, 62, {:3- 

Along with this we shall consider Beltrami coordinates 

Yi = th ( ( i /R)  (1) 

where R is the radius of  the Lobachevsky space. 
The coordinates yi fill the inner space of  a Euclidean sphere with radius 

equal to one (Yefimov, 1978): 
2 2 2 y~+y2+y3< 1 (2) 

Movement is an important notion in Lobachevsky geometry as in any 
other. Transfigurations Yi transform the sphere (2) into itself and are linear 
fractional (Yefimov, 1978; Alexeevsky et al., 1988): 

y, = ( j ~  a~yj+b~)/(j~=l ajyj+ fl) (3) 

where %, at, b~, and /3 are constants, and y'i are the transformed co- 
ordinates y;. 

Consider also parabolic coordinates x;: 

x; = RyJ(1 -ya) (4) 

where the inside of the sphere will form the inside of  the paraboloid. 
These coordinates are convenient when examining a set of  straight 

lines parallel to the abscissa of  a Cartesian coordinate system in the positive 
direction. 

As can be easily seen, movements that change the set of  straight lines 
into themselves are described by the following linear transformations x~ 
and x7 of  coordinates x~: 

x~ = hXl + ~X ax2 +v/-A /3x3 + 1/2 ( a2+  fi2)R - R/2  (1 - A), 

x~-=~-A x2-l-olR , x ; =  ~'-A x3k -~R , ( 5 )  

. . . . . . .  O -x~s in  O, " -  ' ' xl - x ~ ,  x 2 - x ~ c o s  x 3 - x 2 s i n  O+x3cos 0 

where a, fl, A, and 0 are arbitrary constants, A > O. 
Let us make one more point we will need: in coordinates yf and xi the 

planes in Lobachevsky geometry are described by linear equations of  the 
type 

3 3 

Y, aiyi = ao, Y~ ~ixi =/30 (6) 
i=1 i=1 

where ai, fli a r e  constants. 
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3. M O T I O N  OF A B O D Y  IN LOBACHEVSKY GEOMETRY 

First let us find the equation of translation of a solid body with inertia. 
Let us start with some necessary axioms: 

1. The points of  the body should move in a straight line, the line 
segments should remain straight and its size should be limited. 

2. The equation of  mot ion should be covariant with respect to a change 
of zero time and the reference point of the Cartesian coordinate system. 

3. The speed of points of  the body cannot exceed the light speed. 
4. When R--> oo, the sought for equation should become an equation 

of  classical mechanics. 
According to the first requirement, the points of  the body in question 

move by parallel lines (in the direction of movement) ,  or else the body  size 
could become unlimited. 

Let us choose a Cartesian system with the abscissa parallel to these 
straight lines in the same direction. In this coordinate system the equation 
of free translation of points of  the body will be 

dx]dt  --- u~, i = 1, 2, 3 (7) 

where 

t h ( ( i / R )  R [ [2c'?~ ] 
xi = R 1 - t h ( ( 1 / R ) '  t = 2--c [exp~--~-)  - 1., (8) 

(~ are orthogonal  projections to the axes of  the considered Cartesian coordin- 
ate system, ~- is time, c is the light speed, and u~ are constants, the same 
for all points of  the body,  uz = u3 = 0, ul --- 0. 

Let us demonstrate  thus. 
As u2 = u3 = 0, then from (7) and (8) it follows that the points of  the 

body move along straight and parallel lines (x2 = const, x3 = const; when 
~1 --> oo we have (2 ~ 0, (3 --> 0). One can easily see that the size of  the body 
is also limited. 

The difference xi ( t2) -x i (h)  does not depend on the point, as is seen 
from (7). From this we have that the straight segments of  the body [described 
in coordinates x~ with a couple of  linear equations (6)] will remain straight 
under  the movement .  

So the first condition is guaranteed. 
From (7), (8), and (5) it follows that the second is also correct. 
Since, when R ~ oo, x~ = (~, t = r, the fourth holds as well. 
Let us denote by v the velocity of  the point at the moment  r relative 

to the local Cartesian coordinate system chosen about  it, and when ~" = 0 
as Vo. Then from (7) and (8) we have 

( c/ v - 1) = ( C/ Vo- 1) exp(-2c~'/ R ) (9) 
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When vo < c the speed v increases and v ~ c when ~'-0 oe. The extreme 
case is Vo = c as the velocity c becomes constant and equal to c. 

With this, equation (7) is the sought for equation of  free translation 
of the solid body. 

From (9) we get that a free mass point in Lobachevsky space is subject 
(on the side of  the physical vacuum) to the accelerating force FL: 

d(mv)  2c 
~ = F L ,  FL-- mv (10) 

dt R(1 + v / c )  

where v is the velocity vector of  the mass point  relative to the local Cartesian 
coordinate system chosen about it, v = Iv[, and m is its relativistic mass. 

4. THE M O T I O N  OF P H O T O N S  IN LOBACHEVSKY SPACE 

Suppose a photon is emitted toward an observer from a far enough 
point M of  the straight line I with a momentum directed along the same line. 

Let us choose a Cartesian coordinate system in which the abscissa is 
parallel to l and converges with it at the point M. 

We shall suppose the following axiomatic requirements for the phase 
of  the wave function of the photon: 

1. The form of the phase of  the wave function should be covariant 
with respect to the zero of  time and the reference point of  the coordinate 
system. 

20 The wave, in accord with quantum mechanics,  should be flat and 
its front should expand with the light speed c. 

3. When R--> 0% it should come to the classical form. 
The phase  ~ that satisfies all these requirements has the form 

3 

~ = t o t +  • 0ixj+Oo (11) 
j=l 

t = ( R / 2 c ) [ 1  - e x p ( - 2 e , c / R ) ]  (12) 

where xj are parabolic  coordinates in the given coordinate system, and to, 
0j- are constants. 

The truth of  the first and the third requirements and the flatness of  the 
wave follow easily from (11), (12), and the characteristics of  the parabolic 
coordinates. 

Let us choose the straight line l as the abscissa. 
Then, owing to the axial (l) symmetry in the phase ~o, we have 02 = 03 = 0 

and when the abscissa is ~:1 = c(~'- ' ro),  where Zo = ( R / 2 c ) l n ( w / c 0 0  the 
wave phase will be constant. It follows that the wave would spread with 
the light speed. 
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Hence, the phase ~ is what was sought. 
From (11) and (12) we find that the photon frequency v is determined 

by 

v = v0 e x p ( - 2 ~ / R )  (13) 

where r is the distance gone by the photon by the time z, and Vo is its initial 
frequency when r = 0. 

From (13) when r R we have Hubble's law (the red shift of  photon 
frequency) with Hubble's constant H = 2c/R.  In this way in Lobachevsky 
space the red shift in the spectra of galaxies could be explained without 
presuming their dispersion (and so could be interpreted as the result of  a 
physical vacuum influence). Having in view the exponential character of 
the diminution of the photon frequency (13), the photometric paradox of 
Sheso and Olbers (Klimishin, 1983) is not difficult to explain. 

5. TWO PROBLEMS OF NEWTONIAN MECHANICS 

5.1. Kepler's Problem of  Movement  of a Mass  Point  of  mass  m in a 
Gravitational Field of  Spherical Mass  M 

Taking into account the formula (10), we find for a small force FL in 
Lobachevsky space that the dynamics of a mass point are determined by 

2c 
mw= F+FL,  FL = ~  mv (14) 

where F is an external force, m is the mass, w is the acceleration of  the 
mass point, and v is its speed (we take Iv I<< c). 

Since FL is small, to solve equation (14) in Kepler's problem it is 
convenient to use the theory of  disturbances. A nondisturbed solution 
(Ft. = 0) is a Kepler motion in an ellipse with large semiaxis a and eccen- 
tricity e. 

By the theory of disturbances (Duboshin, 1963) we have the equations 

dp 4c de 4c (TM) 1/2 dq~ 
d~" R p dz R (cos ~ + e )  p3/2 d ' r -  ( l + e  cos ~)2 (15) 

where p = a(1 - e); a and e are slowly changing parameters of an elliptic 
orbit, 3' is the constant of  gravitation, and ~ is the true anomaly. 

From (15), we obtain for the averages per turn of the large semiaxis a 
and eccentricity e, when a << R, 

a = ao exp(4c,r/R),  e = eo (16) 

where ao = const, eo = const. 
Therefore the mass point would turn around the mass M in an elliptical 

spiral with a fixed eccentricity of  orbits of  slowly growing size. 
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5.2. Free Rotation of  the Body about its Axis  

Let us make use of  equation (14) for every mass point of  the body, 
where F in this case is a summary force acting upon the point by all the 
others. Then, taking the moment of  the vectors on the right and left parts 
of  equation (14) with respect to the axis of rotation and carrying out the 
sum over all points of  the body, bearing in mind that the inner force moment 
would cancel, we easily obtain 

dG/d~" = ( 2 c / R ) G ,  G = Go exp(2c ' r /R)  (17) 

where G is the vector of  angular momentum of the body and Go is that 
when r = 0. 

Hence, the angular momentum of a freely rotating body would slowly 
grow. 

6. APPLICATIONS TO SOLAR C O S M O G O N Y  

In the introduction some basic properties of the solar system were 
formulated which could not be explained from the point of  view of 
mechanics in Euclidean space. Let us demonstrate how they can be explained 
in the mechanics of Lobachevsky space just given. 

Consider a symmetric cosmic body rotating about its axis. From (17) 
it follows that as the time ~" increases, the angular momentum vector grows 
and at some instant the mass points on its equator reach the critical velocity 
when gravity is balanced by the centrifugal force. At the same instant these 
mass points draw themselves away from the body and start rotating about 
it along the equatorial circumference. From (16) it follows that the detached 
mass points would move by in a circular spiral. The radius of  a circuit as 
the time goes on will slowly grow. 

Within the Rosh radius [which characterizes the maximum distance 
from the center of the body when large enough objects cannot yet exist due 
to the tidal raising forces that break them (Klimishin, 1980)], the detached 
mass points would form a ring around this cosmic body. When at last all 
these mass points go beyond the Rosh radius, then they can condense into 
a secondary planet of the cosmic body. By the central symmetry of the ring, 
the circuit of  the spiral orbit will be circular [it is worth noting that the 
planetary rings are really situated inside the Rosh radius and the secondary 
planets (moons) outside this radius]. 

So the formulas (16) and (17) allow us to draw the following 
conclusions: 

1. After a large while rings are created about a rotating celestial body 
in its equatorial plane, and then moons are formed from these rings when 
they go beyond the Rosh radius. 
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2. All these moons of  a celestial body will move about it in its equatorial 
plane in a circular spiral. With the flow of  time its radius will grow. 

These conclusions can account for the main characteristics of the solar 
system: movement of the planets in almost circular orbits practically in the 
solar equatorial plane in the direction of rotation of the sun itself, a similar 
property of  most of their moons, disposition of  their rings in the equatorial 
plane, and the great value of the angular momentum of the planets. 

It should be mentioned that the ejection of  matter from a rotating body 
when its velocity because of  (17) reaches the critical value on the equator 
ends when the velocity of equatorial points drops significantly, i.e., as a 
result of an explosion. The reason for the explosion would be the breach 
of  equilibrium of the body resulting from the breaking away of a sufficiently 
large amount of matter from the equator. The same explanation could fit 
the observed explosions of  stars, which also has not found any satisfying 
explanation (Gorbatzky, 1979). 

We should note that, considering (16), the stars in galaxies would 
follow spirals, which gives us a way to interpret the origin of  the spiral 
structure of galaxies. 

As an application of formula (9), let us turn our attention to the 
enigmatic fact of the fantastic values of energy reached by particles of 
cosmic rays. This phenomenon can be explained by noting that, in accord- 
ance with (9), the velocity of particles when the time is very long can become 
extremely near to the light speed. 

Let us now consider the calculation of  the space radius R and Hubble's 
constant H by the formula given above: 

H = 2 c / n  (18) 

To this end, let us regard the movement of the Moon about the Earth. 
Considering (16) averaged per turn, the angular velocity w of revolution is 

w = (TM/r3o) ' /2 e x p ( - 6 c r / R )  (19) 

where ro is the average distance of the Moon from the Earth at r = 0, M is 
the Earth's mass, and 7 is the constant of gravitation. 

From (18) and (19) it easily ensues that the angular acceleration (in 
this instance, deceleration) of the Moon e is 

e = -6coo~ R = -3H~o (20) 

On the other hand, it is known that the average longitude of the Moon 
really suffers deceleration, and the correction AA for this slowing down is 
(Abalakin, 1979) 

AA = - 11".22rc 2 (21) 

where r~ is the time in Julian centuries. 
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Substi tuting for (20) the known value o f  w for  the M o o n  and the value 
o f  e f rom (21), we find H :  

H = 46 k m / s e c .  Mpk  (22) 

This value o f  Hubble ' s  constant  is very near  to that  generally acknowl-  
edged by ast ronomers ,  which is 50 k m / s e c - M p k  (Klimishin, 1980, 1983). 

Hence,  formula  (20) makes it possible to explain the experimental  fact 
o f  the slowing down o f  the revolut ion o f  the M o o n  about  the Earth and to 
calculate the value o f  Hubble ' s  constant.  

F rom (18) and (22) we find the magni tude  o f  the radius o f  the space R:  

R = 4 x 1023 k m =  1.3 x 104 Mpk  (23) 
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